Measurements of Inorganic Materials and Acidity in Plantation Teakwood

Ganis Lukmandaru, Rudy Nur Hidayah


Information concerning ash materials and acidity (pH values) within the wood of teak (Tectona grandis L.f.) plantations is especially limited. Samples taken from the stands of Perhutani plantation (Madiun and Randublatung) and community forests in Kulon Progo (Temon and Kalibawang) were analyzed to determine the ash content, metallic elements constituting the ash fraction, as well as pH values. The ranges of ash content were 0.55-3.88% whereas acid insolube ash content (silica/silicates) were 0.12-2.45%. The main four inorganic elements in wood were assayed by atomic absorption. The levels of these metals ranged from 340-4774 ppm for calcium, 17-4399 ppm for potassium, 143-1676 ppm for magnesium, and 0247 ppm for iron. Further, the pH values varied from 5.33-7.25. Differences of inorganic variables and pH values in wood were found between trees of different growth-site and radial position. The variation among the different sites was significant in the contents of silica, calcium, magnesium, potassium, and sodium while the effects of radial direction were significant in the silica and potassium levels. Ash content was positively correlated with acid insoluble ash (r = 0.77) and potassium content (r = 0.47). Furthermore, pH values were positively correlated with the magnesium content (r = 0.65) and negatively correlated with potassium (r = -0.49) and sodium contents (r = -0.55). A description of the chemical properties of the soil, however, was not sufficient in determining whether there was a relationship between the levels of metal elements or pH values in the wood and in the soil.


Tectona grandis L.f.; ash content; silica; inorganic element; pH value.

Full Text:



Adamopoulus, S.; E. Voulgaridis; and C. Passialis. 2005. Variation of certain chemical propeties within the

stemwood of Black Locust (Robina pseudoacacia L). Holz als Roh- und Werkstoff 63: 327–333.

ASTM International. 2002. D-1102 Test methods for ash in wood. Annual Book of ASTM Standards 2002, Section 4: Construction West Conshohocken, PA . 175.

Balaban, M. and N. Yilgor. 1995. The acidity of hardwoods and softwoods grown in Turkey. Holz als Roh-und Werkstoff 53: 332.

Balaban, M. and G. Uçar. 2001. The correlation of wood acidity to its solubility by hot water and alkali. Holzals Rohund Werkstoff 59: 67–70.

Basri, E. and I. Wahyudi. 2013. Sifat dasar kayu Jati Plus Perhutani dari berbagai umur dan kaitannya dengan sifat dan kualitas pengeringan. Jurnal Penelitian Hasil Hutan 31: 93-102.

Cookson, L.J.; K.S. Damian; K.J. McCarthy; and N. Chew.2007. The effectiveness of silica treatments against wood-boring invertebrates. Holzforschung 61: 326–332.

Fengel, D. and G. Wegener. 1995. Kayu: Kimia, Ultrastruktur, Reaksi-reaksi. Diterjemahkan oleh Sastrohamidjojo H. Gadjah Mada University Press, Jogjakarta.

Hidayati, F.; F. Ishiguri; K. Iizuka; K. Makino; S.N. Marsoem; and S. Yokota. 2014. Among-clone variations of anatomical characteristics and wood properties in Tectona grandis planted in Indonesia. Wood and Fiber Science 46: 1-9.

Kjaer, E.D.; S. Kajornsrichon; and S.B. Lauridsen. 1998. Heartwood, calcium and silika content in five provenances of teak (Tectona grandis L). Silvae Genetica 48: 1-3.

Kubo, T. and S. Ataka. 1998. Blackening of Sugi (Cryptomeria japonica D Don) heartwood in relation to

metal content and moisture content. Journal of Wood Science 44 : 137–141.

Lukmandaru, G. 2009. Sifat kimia dan warna kayu teras Jati pada Tiga Umur Berbeda. Jurnal Ilmu dan Teknologi Kayu Tropis 7: 1-7

Lukmandaru, G. 2010. Sifat kimia kayu jati (Tectona grandis) pada laju pertumbuhan berbeda. Jurnal Ilmu dan Teknologi Kayu Tropis 8: 188-196.

Lukmandaru, G. 2011. Komponen kimia kayu jati dengan pertumbuhan eksentris. Jurnal Ilmu Kehutanan 5: 2129.

Lukmandaru, G. 2012. Sifat Kelarutan dalam air, keasaman dan kapasitas penyangga pada kayu jati. Prosiding Seminar Nasional MAPEKI XIV, Yogyakarta. 875-882pp.

Lukmandaru, G. 2013. The natural termite resistance of teak wood grown in community forest. Jurnal Ilmu dan Teknologi Kayu Tropis 11: 131-139.

Lukmandaru, G.; T. Ashitani; and K. Takahashi. 2009. Color and chemical characterization of partially blackstreaked heartwood in teak (Tectona grandis Lf).Journal of Forestry Research 20: 377-380.

Marsoem, S.N. 2013. Studi mutu kayu jati di hutan rakyat Gunungkidul. I. Pengukuran laju pertumbuhan. Jurnal Ilmu Kehutanan 7: 108-122.

Marsoem, S.N.; V.E. Prasetyo; J. Sulistyo; and G. Lukmandaru. 2014. Studi mutu kayu jati di hutan rakyat Gunungkidul. II. Tegangan pertumbuhan pohon. Jurnal Ilmu Kehutanan 8: 3-13.

Martawijaya, A.; I. Kartasudjana; K. Kadir; and S. Amongprawira. 1981. Atlas Kayu Indonesia Jilid I.

Balai Penelitian Hasil Hutan. Badan Litbang Kehutanan. Bogor. 42-47p.

Mayer, I. and G. Koch. 2007. Element content and pH value in American black cherry (Prunus serotina) with regard to colour changes during heartwood formation and hot water treatment. Wood Science & Technology 41: 537–547.

Minato, K. and T. Morita. 2005. Blackening of Diospyros genus xylem in connection with boron Content. Journal of Wood Science 51: 659 – 662.

Ola-Adams, A.B. 1992. Effects of spacing on biomass distribution and nutrient content of Tectona grandis Linn. f. (teak) and Terminalia superba Engl. & Diels. (afara) in South-Western Nigeria. Forest Ecology and Management 58: 299–319.

Okada, N.; Y. Katayama; T. Nobuchi; Y. Ishimaru; H. Yamashita; and A. Aoki. 1987. Trace elements in the stems of trees I. Radial distribution in Sugi (Cryptomeria japonica D. Don). Mokuzai Gakkaishi 33:913- 920.

Okada, N.; Y. Katayama; T. Nobuchi; Y. Ishimaru; and A. Aoki. 1993. Trace elements in the stems of trees VI. Comparisons of radial distributions among hardwood stems. Mokuzai Gakkashi 39: 1119 – 1127.

Pedieu, R.; B. Riedl; and A. Pichette. 2008. Measurement of wood and bark particles acidity and their impact on the curing of urea formaldehyde resin during the hot pressing of mixed panels. Holz als Roh- und Werkstoff 66: 113–117.

Polato, R.; P.B. Laming; and R. Sierra-Alvarez. 2003. Assessment some wood characteristics of teak of Brazilian origin. In : Proceeding of the International Conference on Quality Timber Products of Teak from Sustainable Forest Management. K.M. Bhat, K.K.N

Nair, K.V. Bhat, E.M. Muralidharan, J.K. Sharma (Eds) Kerala, India. 257-265 pp.

Rowell, R.; R. Pettersen; J.S. Han; J.S. Rowell; and M.S. Tshabalala. 2005. Cell wall chemistry. In : Handbook of Wood Chemistry and Wood Composites. Rowell R (Ed). CRC Press. Boca Raton London New York Washington, D.C.

Shmulsky, R. and P.D. Jones. 2011. Forest Products and Wood Science: An Introduction, Sixth Edition. John Wiley & Sons, Inc.

Technical Association for the Pulp and Paper Industries. 1992. Acid-insoluble in wood and pulp. TAPPI Test Method T 222 os-74. TAPPI Press. Atlanta.

Tsuchiya, Y.; H. Shimogaki; H. Abe; and A. Kagawa. 2010. Inorganic elements in typical Japanese trees for woody biomass fuel. Journal of Wood Science 56: 53-63.

Windeisen, E.; A. Klassen; and G. Wegener. 2003. On the chemical characterization of plantation teakwood (Tectona grandis L) from Panama. Holz als Roh- und Werkstoff 61 : 416–418.



  • There are currently no refbacks.

Copyright (c) 2020 Wood Research Journal

Indexed by:




Copyright ©Wood Research Journal  

    ISSN: 2087-3840,       EISSN: 2774-9320



WRJ is licensed under a Creative Commons Attribution 4.0 International License